
How To Use Protocol Builder

If you have followed the instructions in the “JP1 – How Easy Is It?” document and have learned the buttons from your original remote, but when you look at them in IR.exe the signals are not decoded (ie, the protocol and device code info is blank, or just displays “GAP” information), then you probably need to create a new protocol for this device.

Actually, your next move should really be to start a new thread on this in the JP1 Forums, just in case someone has already developed something you can use, but assuming that that is not the case, you can probably use the Protocol Builder spreadsheet (aka “PB”) to build a new protocol for your device. I say “probably” because PB is only really designed to handle the most common protocols, so if the signals for your device don’t quite conform to the simple mould, they may require some custom assembler code, which is outside the scope of what PB can do.

At any rate, let’s proceed.

[image: image1.png]
Image 1 – the “Learned Signals” tab in IR
First, look at the signals in the “Learned Signals” tab of IR.exe, then cut & paste the timing data over to a text editor (such as Notepad, etc). It would be helpful if the text editor allows you to perform global edits. The version of Notepad that ships with Windows 2000 does allow global edits, but earlier versions do not, in which case it might be a better idea to use Wordpad. Copy the data in the order that the buttons appear in the Learned Signals tab so you don’t lose track of which button each set of data belongs to.

When you have completed copying the data, you should have a file somewhat like the codes1.txt file included in this zip file. The next step is to try and clean up the signal times. IR tends to report the signal times very exactly, but in reality most devices have quite a large level of tollerance for signals not being exactly what they should be. So, what we need to do now is try and round all the numbers up or down so all similar numbers are actually the same. For example, if you see times like +988, +995, +1015, etc, they are all really the same time and can be rounded to +1000.

When you have finished rounding the numbers, you should end up with a file somewhat like codes2.txt in the zip. The data in this file should be viewed as pairs, where a pair is a grouping of a ON time and an OFF time. The ON times are represented by positive numbers and the OFF times are represented by negative numbers. The next step is to attempt to identify the following pairs:

· Lead-in pair

· Logical “zero” pair

· Logical “one” pair

· Lead-out pair

Looking at the data in codes2.txt, you will notice that the first pair is “+5000 –3000” and then there is a mixture of the following two pairs “+1000 –1000” and “+1000 –3000”, then eventually you will find a pair with a much bigger OFF time, and then the whole signal repeats. In all of these examples, the signal is repeated 2 times, and each repetition includes the lead-in and lead-out pairs.

Therefore, here’s the data for the afore mentioned pairs:

· Lead-in pair = “+5000 –3000”

· Logical “zero” pair = “+1000 –1000”

· Logical “one” pair = “+1000 –3000”

· Lead-out pair = (to be determined)

Actually, there is no exact science to deciding which of the two variable pairs is the logical “one” and “zero” pairs. Generally speaking, the “zero” pair will have smaller times than the “one” pair, but even that’s just a guess. Bottom line, it doesn’t really matter. In fact, UEI gets it wrong more often than they get it right in their protocols.

So, now that we’ve guessed the “one” and “zero” pairs, let’s edit the file so we can see the binary. My preferred way to do this is to edit the strings like this:

“+1000 –1000” (0^

“+1000 –3000” (1^

I put the ^ character after the number so that if I later decide I want to reverse the pairs and make the first pair the logical “one” I can edit all the 0^ and 1^ strings and reverse them. When you’re done editing the “one” and “zero” pairs, you should end up with a file somewhat like codes3.txt You’ll notice that I’ve inserted a space in the middle of the binary string, breaking it into two groups of 8. In the binary world, 8 is considered a round number, so you’ll often find that the total length of the binary signal is a multiple of 8. In this case you should notice that the second string is constant for all the signals, so we can consider this to be our “device code”. The first string is different for all the signals, so we can consider this to be our “command code”.

While units of 8 are the most common, there are always exceptions to every rule. Your immediate goal is to determine which bits are constant for every signal and which bits vary. The more learned signals you have, the greater the chance that you will get this right.

At this point you should examine the data and see if you can spot any “compliments”. A compliment code is where the data is the same as the previous data, only inverted. (Inverted, or complimented, means that if the original bit was 0, the new bit should be 1, and vice versa).

Normally, you would probably find that the lead-out pair is constant for all signals, but in this case it varies, which leads me to suspect that it’s calculated as a result of the total signal length. Every “zero” pair lasts 2000 uSecs and every “one” pair lasts 4000 uSecs, so given that there are 16 bits in each of these signals, the data portion of the signal will last a minimum of 32000 uSecs (which would mean that the binary was all zeroes). Each “one” in the signal would add an additional 2000 uSecs to the total. If you calculate the total duration of the data portion of the signal and add in the lead-out times, you’ll find that each signal lasts for a total of 98000 uSecs.

Now, let’s move on to the PB spreadsheet itself, when you first open it, it looks like this:

[image: image2.png]
Image 2 - Protocol Builder

And you thought KM was scary! Don’t worry, just like KM this spreadsheet is actually easier to use than it looks. Now we have to start entering the data that we have just worked on.

1) Description: Very short description of the signal, our signals were for a “Next Level” cable box, so let’s enter “Next Level”.

2) Remote Type: Generally speaking, you should leave this as “S3C8 Generic Code” as this covers most of the remote in use in the JP1 world. If you believe that you need one of the other options, but are not sure which one to use, you should post a question about it in the forums.

3) Protocol Id: Basically, this can be whatever you want, but it’s generally a good idea to use an id that is not already established as an official protocol id. You enter the code in hex format where 0 is the smallest value allowed and 1FF is the largest. So, I would advise that you use 1FF for this new protocol.

4) Frequency: Enter the value displayed in IR’s “Learned Signals” tab.

5) Duty Cycle: There’s no easy way to determine this, so use 30% unless you have reason to do otherwise.

6) Signal Structure: This is determined by how the binary data is laid out. In our example, the command code came before the device code and there weren’t any compliments involved, so we should select “cmd-dev”.

7) [Device] Bytes: this is the number of bytes of fixed data. In our example we found one fixed byte, so we will enter 1.

8) Bits/Dev: this is how many bits are in each fixed byte. The max value is 8, which is also the most common answer. In our example, there are 8 fixed bits.

9) [Command] Bytes: this is the number of bytes of variable data. In our example we found one variable byte, so we will enter 1.

10) Bits/Cmd: this is how many bits are in each variable byte. The max value is 8, which is also the most common answer. In our example, there are 8 fixed bits.

11) [Repeat] Value: this is the minimum number of times the signal should repeat. It appears from the data in our examples, that the signal should repeat at least 2 times.

12) Type: when set to ‘Minimum’, item 10 above controls the minimum number of repeats, supposedly ‘Forced’ makes the signal repeat that many times only, but I understand this this setting is not reliable.

13) Hold: this determines if the signal repeats, and if so, under what circumstances. “Yes” means the whole signal will repeat for as long as the button is held down. “No” means the signal does not repeat at all. Selecting “Ch+/-, Vol+/-, FF, Rew” will cause the signal to only repeat when those buttons are used, otherwise it will not repeat. The final selection is “No data bits in repeat”, which is outside of the scope of this document. All of the data in our limited sample would suggest that our signal does not need to repeat when the button is held down, so “no” would be the logical selection. However, the CH+ and CH- buttons did repeat, so “Ch+/-, Vol+/-, FF, Rew” is probably the right selection. If in doubt, try each of them and see which works.

14) [‘1’ Burst] ON (uSec): this is the ON time for the logical “one” pair (which is the positive number), so for our example we will enter 1000.

15) OFF (uSec): this is the OFF time for the logical “one” pair (which is the negative number), so for our example we will enter 3000.

16) [‘0’ Burst] ON (uSec): this is the ON time for the logical “zero” pair (which is the positive number), so for our example we will enter 1000.

17) OFF (uSec): this is the OFF time for the logical “zero” pair (which is the negative number), so for our example we will enter 1000.

18) [Lead-In Style]: this determines whether there is a lead-in burst pair for this signal, and if so, whether it appears once only or in every repetition of the signal. In our example, the lead-in is present in every repetition, so “Same Every Frame” is the correct selection.

19) [Lead-Out Style]: this determines whether the lead-out portion is a burst pair or just a single OFF time. “[-LO]” means it’s just a single OFF time. “[LI,-LO]” means it’s a pair which uses the Lead-in pairs ON time. “[OneOn, -LO]” means it’s a pair that uses the logical “one” pairs ON time. “[LI], [OneOn, -LO]” means that the lead-in pair is repeated and it’s followed by a “[OneOn, -LO]” pair. In our example, the lead-out ON time was 1000, which matches the ON time for the logical “one” pair, so we should select “[OneOn, -LO]”.

20) [Lead-Out] OFF (uSec): this is the lead-out OFF time. (see below)

21) OFF as Total: when “no” is selected, the OFF time entered above will be used for every signal. When “yes” is selected, the total duration of the data portion of the signal is calculated and subtracted from the time entered above to determine the actual lead-out time. In our example, we found that the lead-out does indeed vary based on the total length of the signal and we also found that the total length of the signal is always 98000 uSecs, so we should select “yes” here and enter 98000 as the Lead-Out OFF time.

You will notice that I skipped over some of the selections available in PB, any skipped item should be left set to it’s default value. Use of these skipped items is outside of the scope of this document, where I’m trying to keep things somewhat simple.

With all the above selections made, your PB screen should look like this…

[image: image3.png]
Your new protocol code is in the upper right corner ready for you to use. Finally, you should save this code by using the SAVE button, just in case you want to re-load it in the future to make changes. You should also post the saved file in the Yahoo file section.

Next step is creating an upgrade to use this new protocol, for that we need to switch over to KM.

Using your new protocol in KM.

In KM, you should select “Manual Settings” as the protocol and you should cut & paste the protocol code generated by PB into the Notes panel. (You can still enter notes there too, if you like, KM will find the protocol). You should also select OBC for the button codes.

When you select “Manual Settings” a new set of options appears in the lower left hand side of the screen.

PID: this is the protocol id that you used in PB.

2nd Cmd Byte: this is only relevant for signals with more than 1 byte of variable data.

Signal Style: Sometimes this one is a crap-shoot. Take a look at the binary signals shown in the codes3.txt file. Ideally, you would notice that the numbers increase from the left (LSB) or the right (MSB) when you’re looking at the data for the numeric buttons, but that’s not exactly the case here. However, you should notice that the last 2 bits on the right stay constant whereas the bits on the left change constantly, therefore I’m going to make the call that this protocol is LSB. Use of one of the –COMP styles implies that you got the ‘1’ and ‘0’ pairs reversed, which is not typically the case for a protocol that you created yourself.

Bits/Dev: this should match what you selected in PB.

Bits/Cmd: this should match what you selected in PB.

So far, so good, but now you need to enter the functions and their OBCs in the Functions sheet, so you need to figure out what they are, and you still need to figure out what to enter as the device code for this upgrade.

codes4.txt is a cleaned up version of codes3.txt with just one line per signal. You should open this file using Excel. Select “fixed width” and make sure all the columns are treated as text. You should end up with a sheet that looks like this…

[image: image4.png]
The first two columns show the lead in times and the last two show the lead out times, so you can delete those. As we determined that the signal style is LSB, in order to convert the binary signals to decimal, we will need to read them backwards. The easiest way to reverse the order of binary patterns in Excel is to use the MID function. The following formula would reverse the order of an 8 bit binary pattern in cell A1:

= mid(a1,8,1)& mid(a1,7,1)& mid(a1,6,1)& mid(a1,5,1)& mid(a1,4,1)& mid(a1,3,1)& mid(a1,2,1)& mid(a1,1,1)

Assuming that the two columns of binary are now in columns A and B, you could enter this foruma in column C and then copy it to column D, which would give you two columns of binary where the data from columns A and B are reversed.

You could then use the following formula in column E to convert the command codes to decimal:

=bin2dec(c1)

You could then copy this formula to column F in order for it to convert the device codes to decimal. You should end up with a sheet that looks like this (I added column headings to help illustrate the fields). (I have included this spreadsheet in the zip file, it’s called codes4.xls)

[image: image5.png]
Therefore, the device code for our upgrade is 58, and the OBCs for the numeric buttons are as shown.

The Setup sheet in KM should look like this…

[image: image6.png]

